1996

Explain each of the following in terms of the electronic structure and/or bonding of the compounds involved.

- (a) At ordinary conditions, HF (normal boiling point = 20°C) is a liquid, whereas HCl (normal boiling point = -114°C) is a gas.
- (b) Molecules of AsF_3 are polar, whereas molecules of AsF_5 are nonpolar.
- (c) The N-O bonds in the NO_2^- ion are equal in length, whereas they are unequal in HNO₂.
- (d) For sulfur, the fluorides SF_2 , SF_4 , and SF_6 are known to exist, whereas for oxygen only OF_2 is known to exist.

1999

Answer the following questions using principles of chemical bonding and molecular structure.

- (a) Consider the carbon dioxide molecule, CO_2 , and the carbonate ion, $CO_3^{2^-}$.
 - (i) Draw the complete Lewis electron-dot structure for each species.
 - (ii) Account for the fact that the carbon-oxygen bond length in CO_3^{2-} is greater than the carbon-oxygen bond length in CO_2 .

(b) Consider the molecules CF_4 and SF_4 .

- (i) Draw the complete Lewis electron-dot structure for each molecule.
- (ii) In terms of molecular geometry, account for the fact that the CF₄ molecule is nonpolar, whereas the SF₄ molecule is polar.

2002B

Using principles of chemical bonding and molecular geometry, explain each of the following observations. Lewis electron-dot diagrams and sketches of molecules may be helpful as part of your explanations. For each observation, your answer must include references to both substances.

- (a) The bonds in nitrite ion, NO_2^- , are shorter than the bonds in nitrate ion, NO_3^- .
- (b) The CH_2F_2 molecule is polar, whereas the CF_4 molecule is not.
- (c) The atoms in a C_2H_4 molecule are located in a single plane, whereas those in a C_2H_6 molecule are not.
- (d) The shape of a PF_5 molecule differs from that of an IF5 molecule.
- (e) HClO₃ is a stronger acid than HClO.

2003

Compound Name	Compound Formula	ΔH° _{vap} (kJ mol ⁻¹)
Propane	CH3CH2CH3	19.0
Propanone	CH3COCH3	32.0
1-propanol	CH3CH2CH2OH	47.3

Using the information in the table above, answer the following questions about organic compounds.

- (a) For propanone,
 - (i) draw the complete structural formula (showing all atoms and bonds);
 - (ii) predict the approximate carbon-to-carbon-to-carbon bond angle.
- (b) For each pair of compounds below, explain why they do not have the same value for their standard heat of vaporization, $\Delta H^{\circ}_{vap.}$ (You must include specific information about both compounds in each pair.)
 - (i) Propane and propanone
 - (ii) Propanone and 1-propanol
- (c) Draw the complete structural formula for an isomer of the molecule you drew in part (a) (i).
- (d) Given the structural formula for propyne below,

- (i) indicate the hybridization of the carbon atom indicated by the arrow in the structure above;
- (ii) indicate the total number of sigma (σ) bonds and the total number of pi (π) bonds in the molecule.